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Abstract
This paper summarizes our efforts to develop fast algorithms for density
functional theory (DFT) calculations of inhomogeneous fluids. Our goal is
to apply DFTs to a variety of problems in nanotechnology and biology. To
this end we have developed DFT codes to treat both atomic fluid models
and polymeric fluids. We have developed both three-dimensional real space
and Fourier space algorithms. The former rely on a matrix-based Newton’s
method while the latter couple fast Fourier transforms with a matrix-free
Newton’s method. Efficient computation of phase diagrams and investigation
of multiple solutions is facilitated with phase transition tracking algorithms and
arclength continuation algorithms. We have explored the performance that can
be obtained by application of massively parallel computing, and have begun
application of the codes to a variety of two- and three-dimensional systems. In
this paper, we summarize our algorithm development work as well as briefly
discuss a few applications including adsorption and transport in ion channel
proteins, capillary condensation in disordered porous media and confinement
effects in a diblock copolymer fluid.

1. Introduction

The behaviour of fluids at interfaces is fundamental to a wide range of natural and industrial
processes. Well studied examples include the formation of double layers at charged interfaces
(important to colloidal stabilization) [1], capillary condensation of liquids in small pores
(important to the dessicant properties of zeolites and other nanoporous materials) [2, 3] and the
wetting of surfaces by fluids [4]. Density functional theories (DFTs) have played an important
1 Author to whom any correspondence should be addressed.
2 Current address: Dow Chemical Corporation, Houston, TX 77090, USA.
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role in understanding these phenomena. Over the past 20 years, several groups have worked
toward developing accurate functionals to capture the behaviour of atomic fluid models at
solid interfaces [5]. A variety of approaches have also been developed to treat molecular and
polymeric fluids [6, 7]. While development of the underlying functionals will continue to
be an important area for research, our efforts have been focused on developing the numerical
tools needed to solve existing functionals for large two- and three-dimensional problems [8, 9].
This focus arises from a desire to apply DFTs to treat a wide range of problems in the areas of
biology and nanotechnology.

Clearly, nanotechnologies seek to tailor materials and function on nanoscopic length
scales. It is important to note that a variety of nanotechnologies have been developed to both
measure surface forces to ångström resolution and manipulate individual atoms, molecules
or macromolecules. These nanotechnologies include the surface forces apparatus [10a], the
atomic force microscope [11] and the optical tweezers [12]. Other in situ measures of surface
forces include osmotic stress measurements [13] and beam bending stress measurements [14].
These surface force measurements are often made in a solvated environment. It is therefore
possible to apply molecular simulation and DFT approaches to compute these surface (or
solvation) forces. A variety of detailed DFT and molecular simulation studies have been
performed to both demonstrate the underlying statistical mechanical ensembles [15] involved in
the experiments, and to interpret specific experimental results [16]. More recent developments
in nanotechnology seek not only to measure the properties of atoms, but to control their
arrangement and properties in complex assemblies. These assemblies are often formed in a
fluid state, and there are a myriad of interfacial fluid problems that arise. A few examples of
interfacial fluid problems in modern nanotechnology applications include patterned assembly
via soft-lithography [17], self-assembly of silica based nanostructured materials via solvent
evaporation [18] and controlled switching of the properties of fluid lipid bilayers via chemical
recognition events [19].

Many nanotechnologies are, in fact, based on biomimetic principles. While highly tailored
porous materials will be extremely useful for selective separations, efficient adsorption and
the next generation of sensors, it is important to recognize that there are biological systems,
ion channels, that already possess exquisite selectivity and sensitivity [20]. Ion channels are
protein assemblies that span the lipid bilayers of cells. They control the ionic content of the cell,
and in that way influence all of the processes inside the cell. Ion channels are highly selective
for transport of a particular type of ion as a result of the specific three-dimensional structure
and charge distribution of the proteins that make up the channel. These ion channels are very
narrow, 0.5 nm, at the selectivity filter, and so the fluid in and around the pore is expected to be
inhomogeneous. This is an ideal application for DFT approaches, but it is only one of many
possible applications to biological systems. Other examples where there is a clear opportunity
for the application of DFT include solvated interactions of proteins and drug (or toxin) targets,
solvated interactions of biological macromolecules (DNA, RNA, proteins), the structure of
lipid bilayers, permeation of lipid bilayers by small molecules, penetration of lipid bilayers by
macromolecules (e.g. viruses) and routes to the assembly of protein complexes. In all of these
cases, the behaviour of a fluid in the presence of surfaces must be understood. In the examples
above the fluid is either an electrolyte or a lipid bilayer; the surfaces are now the proteins. The
key complexity in studying biological systems is that proteins have specific geometries and
charge distributions that correlate with their functions. As a result a three-dimensional DFT
calculation is required.

While DFTs have not yet been broadly applied to biological systems, we note that
liquid state theories have been applied to ion channel proteins, structure and small molecule
permeation of lipid bilayers, and protein assembly in lipid bilayers [21]. In addition we note
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that many calculations of protein solvation [22] and ion channel transport [23] have been
performed at the level of a Poisson–Boltzmann (PB) electrolyte. While the PB model (point
charges in a dielectric continuum water solvent) is crude, it does capture the basic feature of
a double layer at a charged interface and the requirement of charge neutrality. One important
result that can come from application of DFT to these problems is to quantify the magnitude of
other physical effects (e.g. volume exclusion, dispersion, polarization, hydrogen bonding, etc)
relative to the electrostatics. In addition, DFT provides direct access to a potential of mean
force which may be used to perform simulations on proteins with an accurate but implicit
solvent [24]. Since a large fraction of the computational effort in molecular simulation of
biological systems involves simulation of the solvent, such a coupling could be tremendously
useful.

Clearly, DFT is an attractive way to approach interfacial fluid problems in nanotechnology
and biology. However, three-dimensional (3D) solutions will be required, and will even need to
become rapid and robust enough to be incorporated inside of analysis or molecular simulation
loops. The integral equations on which DFTs are based make 3D calculations challenging.
In this paper, we will summarize our efforts to overcome the numerical challenges to solving
DFTs for 3D systems on the scale of a protein solvation problem. We will show advances
that have been made in analysis capabilities. We discuss a few functional approaches for both
atomistic and polymer fluids from a computational perspective. We also briefly present several
recent applications of our algorithms to demonstrate the feasibility of the methods.

2. Description of functionals

Before proceeding to a comparison of different numerical approaches, we summarize the fluid
models we have studied to date. We note that extension of the algorithms to treat many
other types of model fluids is straightforward. The description presented here is quite brief; a
more detailed description of the DFT approach, the connection between DFT and correlation
function hierarchies, sum rules and approximations can be found elsewhere [25].

2.1. Atomic fluids

Since DFTs are based on finding the extrema of the grand free energy functional, �, we first
write this free energy as a perturbation expansion around a hard sphere system as

� = Fid + Fhs + Fp −
∑

i

∫
dr ρi (r)[Vi(r) − µi ], (1)

where Fid is the ideal gas contribution to the Helmholtz free energy, Fhs and Fp are excess free
energies of the hard sphere and perturbation (e.g. Lennard-Jones or Coulomb) contributions,
Vi is the external field acting on species i and µi is the chemical potential of species i . In our
work, the various terms are

Fid = kT
∑

i

∫
dr ρi (r){ln(�3

i ρi(r)) − 1}, (2)

Fhs = kT
∫

dr �({ρ̄γ (r)}), (3)

and

Fp = 1
2

∑
i

∑
j

∫
dr

∫
dr′ ρi (r)ρ j(r

′)ui j(|r − r′|), (4)
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where � is a nonlocal free energy density, {ρ̄γ } are the set of nonlocal densities and ui j is a
pairwise interaction potential. Note that equation (4) implies that the perturbation potential is
treated in a strict mean field approximation where the perturbation contribution is independent
of the integration between the hard sphere potential and the potential of interest [5].

In our work, we have applied the hard sphere free energy densities derived by Rosenfeld
et al [26]. In this approach, the nonlocal densities are

ρ̄γ (r) =
∑

i

∫
dr′ρi(r

′)w(γ )

i (|r − r′|), (5)

where the w(γ ) are a set (4 scalar and 2 vector) of weight functions based on the so-called
fundamental measures (radius, surface area, volume, etc) of the fluid particles. Specifically,
the weight functions are

w
(3)
i (r) = θ(r − Ri )

w
(2)

i (r) = 4π Riw
(1)(r) = 4π R2

i w
(0)

i (r) = δ(r − Ri)

w
(V 2)
i (r) = 4π Riw

(V 1)
i (r) = (r/r)δ(r − Ri) (6)

where the bold type indicates a vector and Ri is the radius of species i . The hard sphere free
energy density � is given by a sum of terms, � = �s + �v with

�s = −ρ̄0 ln(1 − ρ̄3) +
ρ̄1ρ̄2

1 − ρ̄3
, (7)

�v = − ρ̄V 1ρ̄V 2

1 − ρ̄3
+

1

24π(1 − ρ̄3)2

(
ρ̄2 − ρ̄V 2ρ̄V 2

ρ̄2

)3

. (8)

This functional correctly treats a crossover from a 3D to a 0D fluid [26]. Such a crossover
occurs on crystallization when fluid particles are confined to a point in a 3D volume. We note
that, in the ion channel problem discussed in section 4.1, such a crossover does occur.

The key equations to be solved for the case of atomic fluids are the Euler–Lagrange
equations defined by the functional minimization of the grand potential

δ�

δρi(r)
= 0 = ln ρi (r) + Vi(r) − µi +

∫
dr′ ∑

γ

∂�

∂ρ̄γ

δρ̄γ

δρi(r)

+
∑

j

∫
dr′ ρ j(r

′)ui j(|r − r′|) (9)

where δρ̄γ /δρi(r) = w
(γ )

i (|r − r′|). Equation (9) will be discussed in more detail from a
numerical point of view in section 3.

2.2. Polymeric fluids

In order to study inhomogeneous polymer fluids, we have also developed a polymer-DFT
code [27]. This code is based on the molecular DFT of Chandler et al [6] and follows closely
the approach of Donley et al [28]. Here we simply summarize the system of equations that
must be solved for freely jointed chain polymers. The strategy is to solve the DFT for a system
composed of a noninteracting gas of ideal chains in an unknown field, U(r). The unknown
field is the field required for the ideal system to ultimately have the same density distribution,
ρ(r), as the system of interest in the known external field, V (r). For chains with multiple
types of sites, the inhomogeneous monomer density profile is ρ(r) = ∑

α ρα(r), where ρα(r)

is the density of site type α at r. The unknown field is defined more precisely as a medium
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induced potential on site type α, Uα(r). A functional minimization of the grand potential free
energy, �, with respect to ρα(r) and µ − Uα(r) leads to

Uα(r) = Vα(r) −
∑

β

∫
dr′ cαβ(r − r′)(ρβ(r′) − ρbβ), (10)

where ρbβ is the bulk density for site type β and cαβ is the direct correlation function (DCF)
between the α and β site types in the bulk polymer fluid.

Donley et al focused on hard chain polymers at hard walls and computed DCFs from the
polymer reference interaction site model (PRISM) liquid state theory [28]. We are interested
in treating systems with attractions as well. PRISM theory is known to be more accurate in
its treatment of hard chain systems [29a]. Therefore, we again use a perturbation scheme to
include attractions. Specifically, we apply the random phase approximation

cαβ(r) =
{

ch
αβ(r) if r � σαβ

−βuαβ(r) otherwise
(11)

where the hard chain DCF, ch , is obtained from PRISM calculations and β = 1/kT .
Equation (10) has two unknown functions, the density distribution of interest, ρα(r), and

the medium induced external field, Uα(r). Clearly the relationship between the two must be
defined. For the ideal polymer gas, this relationship is

ρα(r) = V

N
ρbulk

〈
δ(r − rα) exp

[
−β

∑
β

Uβ(rβ)

]〉
S

(12)

where the brackets denote a configurational integral over all possible configurations, {r} =
{r1, r2, . . . , rN}, based on the configuration probability S{r}. For a single random walk chain,
the configurational probability can be written as

S(r1, . . . , rN ) =
Ns∏

s=2

[ω12(rs − rs−1)], (13)

where ω12(r−r′) is the probability of a bond of a certain length. In this work we will consider
freely jointed chains with bond length σ , for which we have

ω12(r) = 1

4πσ 2
δ(|r| − σ). (14)

Given the definition for S{r} in equation (13), the density distribution for sites of type α

on a linear chain becomes

ρα(r) = ρb,α

Nα

Nα∑
s=1

Gs(r)Ginv
s (r)

exp[−βUβ(s)(r)]
(15)

where the sum over s is a sum over all the segments of type α in a chain, β(s) denotes
the bead type associated with segment s and the G and Ginv are propagator functions that
describe the configurational probability based on chain connectivity. The propagator functions
in equation (15) obey the recursion relations

Gs(r) = exp[−βUα(s)(r)]
∫

dr′ ω12(r − r′)Gs−1(r
′) (16)

Ginv
s (r) = exp[−βUα(s)(r)]

∫
dr′ ω12(r − r′)Gi

s+1(r
′) (17)

for the 2 . . . Ns segments in the case of equation (16) and the Ns − 1 . . . 1 segments in
the case of equation (17). They satisfy the ‘initial’ conditions G1(r) = exp[−βUα(1)(r)]
and Ginv

Ns
(r) = exp[−βUα(Ns)(r)]. Note that equation (15) reduces to the expected result,

ρα(r) = ρb,α exp[−βUα(r)], in the case of an atomic liquid. In our calculations,equations (10)
and (15)–(17) make up the system of equations to be solved.
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3. Numerical approaches

In this section, we summarize several numerical approaches we have taken to solve the systems
of equations described above. In all cases we use a fully coupled Newton iteration to locate
equilibrium solutions. The unknowns in the problem are represented by x (e.g. ρi (r)) and
f(x) = 0 is the system of equations to be solved. While we eventually discretized the
unknown functions into a vector of unknown coefficients, and the functional equations into
a set of algebraic equations, the equations will be presented in functional form. Newton’s
method is posed as the solution to

Jd = −f (18)

where d = x(k+1) − x(k) is the difference between successive iterations of the unknowns and
the Jacobian matrix is given by

Ji j(r, r′) = δ fi (r)

δx j(r′)
. (19)

Here subscripts i and j represent different functional equations and unknowns, such as when
solving for multiple components. The linear problem posed by equation (18) is solved for
approximately using GMRES iterative solvers with a variety of preconditioners. We will
discuss the details of the derivation of the residual equations, the algorithms for solving them,
observations about preconditioning and strategies for parallelization below. We note that,
while we are seeking solutions to the nonlinear equations f(x) = 0, multiple solutions may
exist. Away from a phase transition, only one of the solutions will be thermodynamically
stable; other solutions will be either unstable or metastable. Multiple thermodynamically
stable solutions exist at phase transitions. Since the phase diagrams for inhomogeneous fluids
are particularly rich, and investigating those phase diagrams is a central application of DFTs,
we have implemented automated continuation and phase transition tracking algorithms. These
are described further in section 3.4.3.

3.1. Real space numerical approaches

One approach we have implemented is based on forming integration stencils for the nonlocal
densities (atomic fluids) or propagator functions (polymeric fluids) defined above. The
computational strategy is to form the Jacobian matrix based on the real space integration
stencils [8]. The precise nature of the Jacobian matrix depends on how one chooses to
formulate the systems of equations. Here we briefly present implicit and explicit nonlocal
functional approaches for both atomic and polymer fluid models based on this real space
approach.

3.1.1. Hard sphere fluids with implicit nonlocal densities. The residual equation for hard
sphere fluids was given in equation (9). From a numerical point of view the critical question
is how to formulate the Jacobian. Taking the functional derivative in equation (19) yields

Ji j(r, r′) = δi j(r − r′)
ρ(r′)

+
∫

dr′′ ∑
γ

∑
ε

∂2�

∂ρ̄γ ∂ρ̄ε

w
(γ )

i (|r − r′′|)w(ε)
j (|r′ − r′′|) (20)

where δi j(r − r′) = 1 only when i = j and r = r′; otherwise δi j(r − r′) = 0. The physical
meaning of the product of weight functions in the above equation is clear. This product will
be nonzero only if two weight function stencils (centred at r and r′) are overlapping. Each
entry in the Jacobian contains an integral of the intersecting volumes of all possible products



DFT for biology and nanotechnology 12173

of weight functions. Performing these integrals is time consuming because it is an operation
that is O(N2

s ), where Ns is the number of points in a given integration stencil.
In addition to computational complexity, the memory required to store the Jacobian is

another important factor in the feasibility of large three-dimensional calculations using these
accurate DFTs. In this case, there are nonzero Jacobian entries for every node within two stencil
lengths (this is the particle radius, Ri , in the Rosenfeld functional) of the row position, r. Thus
the required memory is proportional to the number of nonzeros in the matrix, M , where

M = 4π

3

(
2R

h

)3

Nc
2 N, (21)

Nc is the number of components in the system and N is the number of mesh points. We
note that the role of the Jacobian is really to direct the Newton updates in the direction of the
solution. Therefore, it is often possible to approximate the Jacobian by coarsening the integrals
(e.g. compute the residual integrals on a mesh of h = 0.1σ while the Jacobians are computed
on a mesh of h = 0.2σ ). This coarsening can be set independently in different regions, and
can often reduce the size of the matrix, and consequently the solve time, by a factor of 10 or
more [8]. Of course the effect of Jacobian coarsening on numerical stability is highly problem
dependent.

3.1.2. Hard sphere fluids with explicit nonlocal densities. Another algorithm with lower
computational complexity can also be formulated in real space by treating the nonlocal
densities, ρ̄γ (r), as an explicit part of the matrix problem. In this case, the matrix problem
involves two residual equations that must be solved simultaneously. The first, f (1), is given by
equation (9) while the second, f (2), is equation (5). In this formulation, there is a f (1) vector
for each species and a f (2) vector for each weight function. The Rosenfeld functionals have
6 weight functions (4 scalar, 2 vector) in one dimension and 10 weight functions (4 scalar,
6 vector) in three dimensions. Thus a three-dimensional three-component system where the
species have different sizes has 13 unknowns per node. In this case, the matrix problem is

 δf
(1)
i

δρ j

δf
(1)
i

δρ̄ε

δf (2)
γ

δρ j

δf (2)
γ

δρ̄ε


[

�ρi

�ρ̄γ

]
= −

[
f (1)

f (2)

]
, (22)

and the specific Jacobian entries are

Ji j(r, r′) = δf
(1)
i

δρ j
= δi j(r − r′)

ρ(r′)
(23)

Jiε (r, r′) = δf
(1)
i

δρ̄ε

=
∑

γ

∑
ε

∂2�

∂ρ̄γ (r)∂ρ̄ε(r′)
wiγ (r − r′) (24)

Jγ j (r, r′) = δf (2)
γ

δρ j
= w jγ (r − r′) (25)

Jγ ε(r, r′) = δf (2)
γ

δρ̄ε

= δγ ε(r − r′). (26)

In this case, the computational complexity involved with forming the Jacobian is much reduced
from the previous section because there are no integrals to perform. More specifically, loading
one row of the matrix is an O(Ns) operation. The result is that the overall computational
scaling is now dominated by the GMRES solution rather than the matrix fill.

The memory required for this explicit nonlocal density approach may be greater or less
than the memory needed for the implicit approach of the previous section. In this case, there
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are nonzero Jacobian entries for every node within one stencil length (this is the particle radius,
Ri , in the Rosenfeld functional) of the row position, r. Thus the number of nonzeros in the
matrix is now approximately

Mex = 4π

3

(
R

h

)3

2Nw Nc N, (27)

and the ratio between this method and that of the previous section is Nw/(4Nc) Since the two
different formulations lead to different Jacobian matrices for Newton’s method,comparisons of
the convergence behaviour and compute times are more complicated and problem dependent.
Jacobian coarsening strategies can be applied to this system of equations as well; however,
these strategies are generally less successful than for the implicit nonlocal density approach.

In figure 1 (curves labelled RS1 and RS2) we show computational scaling results for both
the implicit and explicit nonlocal density approaches for a 3D calculation of a hard sphere fluid
of density ρσ 3 = 0.8785 solved in a periodic (cubic) porous matrix where the lattice spacing
was 3.2σ , and both the fixed particles of the matrix and the fluid particles had size σ . The
figure shows the time per Newton iteration and demonstrates that the implicit method scales
as O(N2.2) while the explicit method scales as O(N1.6).

3.1.3. Hard chain polymer fluids with explicit propagator functions. We now turn briefly
to the computational problem encountered by the polymer systems described above. Again
we restrict our initial discussion to hard chain polymers. We have implemented an explicit
propagator function algorithm similar to the explicit nonlocal density approach described
above. In this method, the unknowns we solve for are {ρi(r)}, {Ui(r)}, {Gs(r)} and {Ginv

s (r)}.
So for a 10-bead polymer with two segment types, there will be 24 unknowns per mesh
point. The four residual equations we solve were previously enumerated. Specifically, f (1)

α (r),
f (2)

α (r), f (3)
s (r) and f (4)

s (r) were given by equations (10), (15), (16), and (17), respectively.
The associated matrix problem is



δf (1)
α

δρβ
I 0 0

I
δf (2)

α

δUα

δf (2)
α

δGs

δf (2)
α

δGinv
s

0 δf
(3)
s

δUα

δf
(3)
s

δGs
0

s0 δf
(4)
s

δUα
0 δf

(4)
s

δGinv
s







�ρα

�Uα

�Gs

�Ginv
s


 = −




f (1)

f (2)

f (3)

f (4)


 , (28)

where the I indicates blocks of the matrix that are just the identity matrix. The remaining
entries are straightforward to enumerate, and we simply note that, as in the previous section,
there are no integrals in the Jacobian. If one attempts to formulate this system of equations
using implicit propagator functions, N-dimensional integrals will appear in the Jacobian where
N is the chain length. These integrals are due to the recursive nature of the propagator equations
and will result in an intractable algorithm.

The approach presented here for polymer fluids can clearly be applied in the limit of a single
monomer as well. From a numerical perspective such an approach can be very fast because
the complex functionals of the previous sections are completely removed from the problem.
Instead, the DCF (taken either from a bulk molecular simulation or an integral equation theory
with some closure) captures the effects of the hard core. This approach has, in fact, been
recently demonstrated by Zhou [30]. One caveat here is that integral equation theories (for
both atomic and polymeric fluids) are often not thermodynamically self-consistent [29a], so
that using DCFs calculated from these theories will necessarily introduce some inaccuracies
into the DFT.
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3.2. A matrix-free approach with FFT convolutions

Another approach we have investigated with respect to solving equation (9) relies on fast
Fourier transforms, FFTs, to compute convolutions [9]. We have furthermore implemented
this scheme as a matrix-free GMRES approach. In this case, the entire Jacobian is never
computed and stored. Rather, we seek only to compute the operation of the Jacobian on
a field, x, which will come from the iterative scheme of interest. Specifically, we seek to
compute y(r) where

yi(r) =
∫

dr′ ∑
j

Ji j (r, r′)x j(r
′). (29)

Consider the Jacobian defined earlier in equation (20). The hard sphere contribution to
the operational Jacobian will be

yi(r) =
∫

dr′ ∑
j

∫
dr′′ ∑

γ

∑
ε

∂2�

∂ρ̄γ ρ̄ε

w
(γ )

i (|r − r′′|)w(ε)
j (|r′ − r′′|)x j(r

′). (30)

Efficient computation of equation (30) relies on noticing that it can be evaluated via two
successive sets of convolutions. To this end, we define two intermediate quantities. The first
is a convolution of the field x with the weight function w:

t (ε)(r′′) =
∫

dr
∑

j

w
(ε)
j (r′′ − r′)x j(r

′). (31)

The second multiplies t with the second derivatives of �:

z(γ )(r′′) =
∑

ε

∂2�

∂ρ̄γ ∂ρ̄ε

∣∣∣∣
r ′′

t (ε)(r′′). (32)

Finally, the contribution to y(r) from the hard sphere part of the free energy functional is

y(r) =
∫

dr′′ ∑
γ

w
(γ )

i (r′′ − r)z(γ )(r′′). (33)

Equation (30) can now be computed with two successive convolutions. The first set of
convolutions is done for each weight function (equation (31)) and the second set of convolutions
is done for each component (equation (33)). Both of these convolutions can be computed with
FFTs, and so the total cost of the computation scales as the sum of the number of weight
functions and the number of components.

Since the matrix is never stored in this scheme the memory requirements are much smaller
than the matrix-based algorithms of the previous sections. The total memory needed will simply
be that necessary to store the residuals and perform the FFTs as described above. It will thus
scale as N , the number of mesh points in the problem of interest. Figure 1 compares the
scaling of this matrix-free Fourier space algorithm (curve labelled FS) to the algorithms of the
previous sections. Clearly, for a single processor computation, this approach has a significant
advantage and allows computation of problems with O(106) unknowns in a modest amount of
computational time.

The tradeoffs of this approach are that one no longer has access to matrix-based
preconditioning methods. Rather (as we discuss further below), physics based preconditioning
will be required, and it is likely that these preconditioning schemes will require tuning when
numerically stiff problems are encountered. A second tradeoff is that the FFT method for
doing convolutions has to be carefully adapted for non-periodic systems. Finally, we note that
a similar algorithm can clearly be developed to solve the polymer-DFT system of equations,
and implementation of those equations is currently underway.
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Figure 1. The time per Newton iteration as a function of the number of unknowns for the real
space and Fourier space algorithms described above. The various curves show scaling results for
the algorithms in sections 3.1.1 (RS1), 3.1.2 (RS2) and 3.2 (FS). In addition a parallel timing for the
RS2 algorithm is shown by open symbols. This parallel timing curve was based on 100 processors
of the CPlant commodity cluster at Sandia National Labs. Note that the single processor timings
were done on faster processors (by about a factor of 4) than the processors in the CPlant cluster. The
scaling exponent, n, is given for each curve where the time was taken to scale as O(Nn). Note that
the number of unknowns, N , is increased by decreasing the mesh spacing for a constant domain
size. All of the algorithms exhibit linear scaling when the domain size is increased at constant
mesh spacing.

3.3. Numerics of perturbation potentials

Finally, we briefly consider the perturbation potentials. The two types of perturbations we
consider are based on Lennard-Jones and Coulomb interactions.

3.3.1. Lennard-Jones perturbations. We typically apply the perturbation approximation of
Weeks et al [32] when we treat Lennard-Jones fluids. In that approximation, the repulsive
part of the potential is replaced. More specifically, for r < rmin we set ui j = ui j(rmin), where
rmin is the position where the potential minimum is found. We also typically cut and shift
the potential with cutoff distances ranging from rc = 2.5σ to rc = 10σ . The perturbation
contribution to the Jacobian in this case is simply

Ji j(r, r′) = ui j(|r − r′|), (34)

and the matrix sparsity now depends on the range of the interaction potential. For small rc

(e.g. 2.5σ ), the cost of the Jacobian is tolerable although large with a real space approach.
Specifically the memory required to store the Jacobian will be

MP = 4π

3

(
rc

h

)3

Nc
2 N. (35)

Thus MP/M = (rc/σ)3. Once again in the matrix-free approach of section 3.2, the Jacobian
is not stored and so essentially there are no additional memory requirements for attractions.
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3.3.2. Coulomb perturbations. In the case of Coulomb fluids, the memory issue could be
particularly severe since these interactions are of infinite extent. However, this problem can
be finessed by introducing the electrostatic potential, φ, as an additional field in the problem.
Specifically, the Coulomb contribution to the Euler–Lagrange equation (equation (9)) is

zi e

(
V c +

∑
j

∫
dr′ ρ j (r

′)z j e

|r − r′|
)

= z j eφ(r) (36)

where V c is the Coulombic part of the external field. Then, in addition to solving equation (9),
we also solve Poisson’s equation:

∇2φ(r) +
∑

i

zi eρi(r) = 0. (37)

This differential equation is very short range compared even to the hard sphere calculations
and results in a very sparse matrix. So, the memory requirements of solving Poisson’s equation
are negligible.

Finally, we note that the strict mean field approximation we have applied here is quite crude.
While it will capture gross features of the system (e.g. charge neutrality and the exponential
decay of double layers for Coulomb systems), it will not capture more subtle features, such as
attractions between charged surfaces in multivalent electrolytes [33] or liquid–vapour equilibria
in molten salts [34]. In studying those cases other groups have suggested several corrections
to the basic theory above. These corrections add additional terms composed of integrals over
either DCFs [33] or total correlation functions [34] to the Euler–Lagrange equation. It is clear
that for biology applications (e.g. to model selectivity in ion channels), an accurate description
of ions in an electrolyte will be required.

3.4. More strategies for fast DFT calculations

In the previous sections, we have detailed various algorithmic approaches we have developed
to solve the DFT equations accurately, rapidly, and with good convergence. There are several
additional strategies for improved performance that we have developed to approach the goal
of being able to solve and analyse large two- and three-dimensional problems. We summarize
some of these strategies here.

3.4.1. Parallelization. The first approach is to apply parallel computations to perform 3D
calculations. We have implemented a spatial decomposition of the mesh in the real space
algorithms across many (up to 1000) processors [8]. In these calculations, each processor
owns different rows of the residual vector and Jacobian matrix corresponding to the mesh
points (and corresponding unknowns) in its domain. One of the most complicated parts
of parallelization is the identification and communication of ghost unknowns. These are
unknowns within an integration stencil length of those unknowns owned by a processor, which
must be communicated before each matrix assembly and matrix–vector multiply.

In the case of Fourier space algorithms, the majority of the computational cost comes in
performing the convolutions with the FFTs. Therefore, parallel speed-up will be possible with
parallelization of the FFT operation. It is known there is initially a decrease in efficiency of the
FFT operation with increasing processors for small numbers of processors, but we expect that
even a modest sized cluster (e.g. 10 processors) will be sufficient to see substantial performance
increase on parallelization.
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3.4.2. Preconditioning. The GMRES iterative solutions of the linear subproblem of Newton’s
method can be greatly accelerated by preconditioning of the linear system. An in-depth
discussion of preconditioners is beyond the scope of this paper; however, we briefly mention
the various strategies we employ. We note that the difference between good and poor
preconditioning strategies can account for an order of magnitude or more in the time to solution,
and in some cases it makes the difference between convergence and no convergence of the
method. In a more general sense, optimal preconditioning for these kinds of DFTs is an open
question that we will be pursuing in the future.

The real space algorithms outlined above have been solved with the parallel iterative solver
package Aztec. This package contains a variety of matrix-based preconditioners including
Jacobi and domain-decomposition methods such as ilut, with variable levels of overlap and
fill-in. For the systems of equations described above the type of preconditionerneeded depends
on the physics of the problem of interest. Generally, hard sphere fluids can be solved easily
with no preconditioning. Lennard-Jones systems often require modest (Jacobi or ilut with no
overlap) preconditioning while polymer systems often require ilut preconditioning with two
levels of overlap between processors and considerable amounts of fill-in.

Clearly, none of these matrix-based preconditioners are available to the matrix-free
approach outlined in section 3.2. In this case, we have implemented a simple physics-based
preconditioner that works well for hard sphere and Lennard-Jones fluids [9]. Preconditioning
has not yet been a limiting factor, but we anticipate that this could be an issue in the application
of the matrix-free approach.

3.4.3. Continuation and phase transition tracking algorithms. While the time to compute an
individual DFT solution is critically important, often one seeks not only to solve a single case,
but rather to solve the equations many times in order to explore parameter space and build
phase diagrams. To study the phase behaviour of confined fluids, we need to be able to track
whole solution branches (e.g. adsorption isotherms) as a function of the system parameters
(e.g. bulk density, ρ). This task is complicated by the fact that the system exhibits multiplicity
and hysteresis. Therefore, we have implemented algorithms for tracking solution branches and
phase transitions, using methods and approaches from the bifurcation analysis community. We
briefly describe these algorithms here.

The pseudo arclength continuation algorithm of Keller [35] was developed for tracking
solution branches with hysteresis. We have used the implementation in the LOCA software
library [36]. This algorithm alleviates the singularity seen at spinodal points by augmenting the
system of equations with an arclength equation and freeing ρ as an unknown. The augmented
system is then described by

f(x(s), ρ(s)) = 0 (38)

g(x(s), ρ(s), s) = 0, (39)

where f is the same residual presented in previous sections and g is an arclength equation.
Here, both x and ρ are parametrized as functions of s, which can be defined as a distance down
the solution branch. It is convenient to use a linearized form of a distance formula. Given a
converged solution xi−1 at parameter ρi−1 and step size �s, the next step must satisfy

g(x(s), ρ(s), s) = (xi − xi−1) ·
∂xi−1

∂s
+ (ρi − ρi−1)

∂ρi−1

∂s
− �s = 0. (40)

This algorithm seeks steady state solutions at steps of arclength �s rather than of the parameter.
The parameter step ρi − ρi−1 is free to decrease in regions of steep response and even turn
negative when tracing out hysteresis.
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One iteration of the Newton method for the augmented system can be expressed in matrix
form as [

J ∂f
∂ρ(

∂x
∂s

)T ∂ρ

∂s

] [
�x

�ρ

]
= −

[
f

g

]
, (41)

where �x and �ρ are updates to xi and ρi . Convergence is determined by the norm of the
updates being below a set tolerance. Then a new step size �s is chosen and the next solution at
a new parameter value is computed. We have found that, even with the arclength continuation
algorithm, sophisticated step size control is needed to robustly follow solution branches in
regions with numerous phase transitions [37].

To find a single phase transition, the arclength continuation algorithm is a powerful
technique. A transition where two solution branches cross can be detected when the free energy
� is plotted versus the parameter. However, it would be very time consuming to manually
construct a phase diagram this way. We have therefore developed a phase transition tracking
algorithm to compute phase diagrams efficiently and automatically [37]. Specifically, our
algorithm uses Newton’s method to converge to a single parameter (e.g. the bulk density) value
and two solution vectors which have equal free energies. The phase coexistence curves can
then be tracked by stepping in a second parameter (e.g. temperature). We therefore repeatedly
solve the following set of 2N + 1 equations at a series of fixed temperatures:

f(x1, ρb) = 0 (42)

f(x2, ρb) = 0 (43)

G = �(x1, ρb) − �(x2, ρb) = 0. (44)

Here the 2N + 1 unknowns are ρb, x1 and x2. The final equation G = 0 requires that the two
profiles have equal free energies, �.

An iteration of a full Newton method for this system has the form


J1 0 ∂f1

∂ρ

0 J2
∂f2

∂ρ

∂�1
∂x1

− ∂�2
∂x2

∂G
∂ρ




[
�x1

�x2

�ρ

]
= −

[
f1

f2

G

]
. (45)

Here the subscript k on the variables f , J and � represent evaluation with solution vector xk

(k = 1 or 2). The algorithm is started using initial guesses near a phase transition as detected
from a single arclength continuation run. At each subsequent temperature, the solutions at
the previous temperature are used as initial guesses to the Newton iteration. A triple-point
tracking algorithm could similarly be constructed as a system of 3N + 2 unknowns.

The matrix solutions for both the arclength continuation and phase transition tracking are
reformulated using bordering algorithms, as detailed elsewhere [36, 37]. With this approach
the augmented matrices in equations (41) and (45) never need to be constructed or solved.
Instead, the updates are calculated using repeated solutions of the N × N Jacobian matrix. It
is therefore very simple to modify a code that uses Newton’s method to also use the analysis
algorithms.

4. Applications

4.1. Solvation of and transport through gramicidin A

In this section we briefly discuss recent calculations we have performed on a simple pore
forming membrane spanning polypeptide gramicidin A [38]. This system is a well studied
model system that is similar in many respects to more complex ion channels [39]. It is important
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to note that experiments can be done to measure the current through single isolated channels as
a function of the applied voltage (or, more generally, electrochemical potential gradient) across
the membrane. These patch clamp experiments are done routinely, and they demonstrate that
the open channel current measured through a given channel is constant. Thus it is reasonable
to model this process as a steady state diffusion process. As was noted in the introduction,
steady state diffusion models of ion channels at the PB electrolyte level of approximation
have been pursued extensively in the biophysics community. This approach is known as the
Poisson–Nernst–Plank (PNP) theory [23].

We have begun to investigate the application of DFTs to ion channels in order to increase
the rigour in the underlying fluid model. As a first approximation, we have modelled the
transport through the pores as a steady state diffusion process similar to the route pursued in
PNP theory. More specifically, we allow the electrochemical potential µ to vary spatially,
µ(r), and its distribution is solved by coupling steady state flux equations,

∇ · Ji = 0 (46)

to the Euler–Lagrange equations discussed previously (equation (9)). To date, we have taken
a very simple species-independent expression for the diffusive flux:

Ji = −Diρi(r)∇µi(r). (47)

We have previously shown that this simple transport-DFT agrees well with grand
canonical molecular dynamics simulations of diffusion through a simple one-dimensional
membrane [40].

While there is not sufficient space here to present a complete summary of our gramicidin
calculations, we show slices of two three-dimensional density distributions for a case where
the fluid is at equilibrium in figure 2. The slices are taken down the centre of the channel. The
gramicidin pore was formed by taking the atomic coordinates of its atoms from the 1MAG
structure in the protein data bank. The partial charge and size of each atom was based on the
Charm-22 force field. This polypeptide is net neutral, but the charge distribution is such that
there is a net negative charge at the ends of the pore and a net positive charge in the centre of
the pore. These calculations were done on 128 processors of the CPlant commodity cluster at
Sandia Labs. Each three-dimensional solution of a three-component electrolyte that included
Rosenfeld volume exclusions and Coulomb interactions took approximately 2 h with the real
space algorithms (with a mesh spacing σ/4) described in section 3.1.2.

Figure 2 compares the density profiles from a PB treatment of the electrolyte with a finite
sized electrolyte. The solvent accessible pore volume is smaller with the finite sized particle
model, and the difference is significant because the pore is small enough that the fluid becomes
a one-dimensional (beads on a string) fluid in this confined space. When liquid-like solvent
densities (e.g. ρσ 3 = 0.7) are considered, the fluid exhibits significant packing in the pore and
can begin to resemble a zero-dimensional fluid.

One way to assess the mechanisms for transport in ion channels is to assume that the
transport proceeds via an energy barrier hopping mechanism. The fact that the fluid in
gramicidin A is a one-dimensional fluid means that the reaction coordinate for this transition
state approach is particularly simple. We have computed the potential of mean force
experienced by an ion as it moves through the channel (down the z axis) as

Wi (z) =
∫

[µ(z; A) − µr − kT ln(ρi(z, A)/ρi,bulk )] d A (48)

where µr is a convenient reference value for the electrochemical potential and the integral is
taken over areas perpendicular to the z axis inclusive of all the accessible pore volume.
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Figure 2. The density (ρσ 3) distribution in one slice through the gramicidin A pore. The y and
z distances are given in σ units where we took σ = 0.3 nm. The top two figures show the cation
and anion density distributions using a PB electrolyte. The bottom three figures show the cation,
anion and neutral solvent in the three-component (3CMP) model. All the ion figures are based on
the density scale on the top. The solvent for the 3CMP model uses the density scale shown on the
bottom.

In figure 3 we show the potential of mean force for a monovalent cation as it traverses the
gramicidin A channel. In these calculations there is a drop in applied electric potential across
the membrane ranging from 0 to 150 mV. This plot shows two deep free energy wells at either
end of the channel that can be attributed to the charge distribution on the protein. Recall that
gramicidin has a net negative charge (and hence a low free energy for a mobile cation) near the
ends of the pore. The fine details (e.g. oscillations on a period of σ ) can be attributed to volume
exclusion based packing effects. The inhomogeneous boundary conditions are responsible for
the linear bias on which both Coulomb and packing effect are superimposed.

The calculations we have performed to date on gramicidin were done with a very
crude restricted primitive model electrolyte where all species have the same particle size.
Furthermore, the calculations shown above did not include either second-order DCF or
perturbation corrections that other groups have discussed [33, 34]. It seems apparent that
there is very broad scope for the application of DFT to problems in biology, but they may
hinge on accurate treatment of electrolytes.

4.2. Capillary condensation in disordered porous media

DFT models can effectively simulate adsorption of confined fluids. We present here
recent calculations on how disorder affects capillary condensation in a porous material [41].
Adsorption in disordered porous materials has received attention lately in lattice based DFT
studies on large three-dimensional systems [3]. These lattice approaches are quite coarse
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Figure 3. The average potential of mean force for a cation in a 1 M 3CMP electrolyte moving
through gramicidin A. The three curves show the PMF for different values of an applied electrostatic
potential across the membrane.

grained, and so we wanted to study systems with the more detailed functionals presented
here in the limit of just a small degree of disorder in the porous material. To that end,
we have performed extensive calculations on two basic model systems. In both cases, the
porous material is composed of parallel cylindrical fibres (thus enabling two-dimensional
solutions), but those fibres are randomly placed in a computational domain with periodic
boundary conditions. One system is composed of 4 cylinders and the other has 16 cylinders.
The interactions between the fibres and the fluid are found by integrating a 12–6 Lennard-
Jones potential over the geometry of the fibre for each mesh point in the fluid. The fluid is also
assumed to interact via a 12–6 Lennard-Jones potential. Fluid–fibre interactions were stronger
than fluid–fluid interactions by a factor of 5. We show here a few results from our analysis
which were enabled by the continuation and phase transition tracking algorithms [37].

Adsorption isotherms were computed with arclength continuation for this porous material,
and two examples are shown in figure 4. Each isotherm is computed automatically with little
or no user intervention. Notice that there is a complex path from the gas-like solutions to
partially filled states to the complete capillary condensed state at high densities. There are
many metastable (and unstable) solution branches in the vicinity of the capillary condensation
transition. As the degree of disorder increases (more fibres), the complexity of the adsorption
isotherm also increases. In both cases, capillary condensation occurs through a progression of
stable partially filled states. In the 16 cylinder case shown here, there are two stable partially
filled states in addition to the fully filled liquid phase (at high densities) and the near-surface
monolayer coverage state (at low densities). The tie lines in figure 4 show the three transitions
that together make up capillary condensation for this system. The 4 cylinder case has one
stable partially filled state. In figure 5, we show three coexisting solutions at kT/ε = 0.7.
The middle figure shows the partially filled state where there is liquid bridge forming between
cylinders 1 and 4 through the periodic boundary.

Finally, a phase diagram in temperature–adsorption space for the 4 cylinder case was
generated with the phase transition tracking algorithms. It is shown in figure 6. The partially
filled intermediate phase is found in the V-shaped region around �/L = 34 and kT/ε = 0.8
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Figure 4. Adsorption Isotherms for 4 (broken curve) and 16 (full curve) random cylinders at
kT/ε = 0.8. In both cases, wall–fluid interactions are strongly attractive with εw f /ε = 5.

Figure 5. Density profiles for a Lennard-Jones fluid in a disordered porous matrix composed of
cylindrical fibrous particles.

in figure 6. For an infinitely disordered system, these intermediate phase transitions will be
layered on top of one another and the adsorption isotherm could appear to be continuous.

4.3. Confined diblock copolymers

Finally, the polymer-DFT algorithms give us the capability of studying self-assembly for multi-
site fluids. In the future we anticipate applying these computational tools to lipid bilayers and
to proteins in those bilayers. Previous studies have used DFT-like integral equation theories
to study membrane protein interactions [21] and self-consistent field theory to study lipid
phase behaviour [42]. The polymer-DFT presented here includes physics that is lacking in
these studies. However, we have to date focused on a simpler well studied polymer system.
Specifically, we have chosen to investigate confined block copolymers [43]. This system
has been well studied in the past with self-consistent field theory [44]. The results of our
DFT calculations are qualitatively comparable with previous calculations, but they include the
effects of compressibility. Compressibility effects are particularly important near the surfaces
where particle packing occurs. In the calculations presented below we have an 8-8 AB diblock
copolymer where the A beads are attractive to the surfaces and the B beads are neutral (with
interaction potential parameter εwB = 0). Since we have a symmetric diblock, the system
forms lamellae in the bulk.
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Figure 6. Phase diagram for a slightly disorderd porous matrix composed of four randomly placed
cylindrical fibres. The excess adsorption, � is given per unit length of the fibres. It is calculated
via � = ∫

dx
∫

dy (ρ(x, y) − ρb).

If the diblock copolymer is confined between parallel planar surfaces, the fluid can in
fact form lamellae that are either parallel to or perpendicular to the surfaces. Generally, the
parallel phase is found whenever the surface separation can accommodate integral numbers of
lamellae into the film. Mixed phases (perpendicular on one surface, parallel on the other) can
also be found. Examples of these three possibilities are shown in the density plots in figure 7.

While a variety of morphologies are possible, the equilibrium structure is the one that
minimizes the free energy. A comparison of the free energies of the various cases is shown
in figure 8. While the mixed phase is never globally stable according to this plot, the parallel
and perpendicular phases are both stable but at different surface separations. As expected, the
parallel phase becomes stable when the surface separation is such that the lamellae can form
with spacings close to the bulk spacing. Clearly, figure 8 shows that multiple solutions can
exist to the polymer-DFT equations, and that phase diagrams are likely to be very rich. Once
again the arclength continuation and phase transition tracking algorithms are important tools
for exploring these phase diagrams.

5. Summary

In this paper we have summarized the activities in our group in developing advanced algorithms
for two- and three-dimensional DFTs near complex surfaces. Fast algorithms are important
because they will allow application of the DFT approach to complex interfaces in biology
and nanotechnology. We have demonstrated that it is currently possible to study solvation
of small proteins with our real-space matrix-based Newton algorithms and accelerated with
efficient use of O(100) parallel processors. Given the clear advantages of the matrix-free
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Figure 7. Density contour plot for three possible morphologies found in a confined symmetric
diblock copolymer.
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Figure 8. Excess surface free energy for parallel (a), perpendicular (b) and mixed (c) phases as a
function of the wall separation H , normalized by the lamellar spacing in the bulk Db .

Fourier space method outlined above, we expect to be able to treat protein solvation on single-
processor workstations with that approach. We have also demonstrated that some of the
algorithmic strategies developed to treat atomistic fluids can be immediately applied to polymer
fluids. The polymer-DFT approach described here is much simpler than the weighted density
approximation approaches to polymers described elsewhere [45]. However, our liquid state
theory based approach does capture complex mesostructures as well as the interplay of those
mesostructures with nanoscopic effects at surfaces.
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